Space-decomposition minimization method for large-scale minimization problems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel Synchronous and Asynchronous Space-Decomposition Algorithms for Large-Scale Minimization Problems

Three parallel space-decomposition minimization (PSDM) algorithms, based on the parallel variable transformation (PVT) and the parallel gradient distribution (PGD) algorithms (O.L. Mangasarian, SIMA Journal on Control and Optimization, vol. 33, no. 6, pp. 1916–1925.), are presented for solving convex or nonconvex unconstrained minimization problems. The PSDM algorithms decompose the variable sp...

متن کامل

A proximal-based decomposition method for convex minimization problems

This paper presents a decomposition method for solving convex minimization problems. At each iteration, the algorithm computes two proximal steps in the dual variables and one proximal step in the primal variables. We derive this algorithm from Rockafellar's proximal method of multipliers, which involves an augmented Lagrangian with an additional quadratic proximal term. The algorithm preserves...

متن کامل

A Subspace, Interior, and Conjugate Gradient Method for Large-Scale Bound-Constrained Minimization Problems

BOUND-CONSTRAINED MINIMIZATION PROBLEMS MARY ANN BRANCH , THOMAS F. COLEMAN AND YUYING LI Abstract. A subspace adaptation of the Coleman-Li trust region and interior method is proposed for solving large-scale bound-constrained minimization problems. This method can be implemented with either sparse Cholesky factorization or conjugate gradient computation. Under reasonable conditions the converg...

متن کامل

Large Scale Empirical Risk Minimization via Truncated Adaptive Newton Method

We consider large scale empirical risk minimization (ERM) problems, where both the problem dimension and variable size is large. In these cases, most second order methods are infeasible due to the high cost in both computing the Hessian over all samples and computing its inverse in high dimensions. In this paper, we propose a novel adaptive sample size second-order method, which reduces the cos...

متن کامل

Solving Large Scale Unconstrained Minimization Problems by a New ODE Numerical Integration Method

In reference [1], for large scale nonlinear equations   = 0 F X , a new ODE solving method was given. This paper is a continuous work. Here   F X has gradient structure i.e.    =  F X f  X ,   f X is a scalar function. The eigenvalues of the Jacobian of   F X , or the Hessian of   f X , are all real number. So the new method is very suitable for this structure. For quadratic fun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 1999

ISSN: 0898-1221

DOI: 10.1016/s0898-1221(99)00088-7